Journal of Organometallic Chemistry, 238 (1982) 267–279 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

## FLUORINE SUBSTITUTION EFFECTS IN ORGANOBORATE CHEMISTRY: VIBRATIONAL AND X-RAY STRUCTURAL ANALYSES OF K[CH<sub>3</sub>BF<sub>3</sub>]

D.J. BRAUER, H. BÜRGER \* and G. PAWELKE

Anorganische Chemie, FB 9, Universität-Gesamthochschule D-5600, Wuppertal, (F.R.G.) (Received May 17th, 1982)

#### Summary

The IR and Raman spectra of <sup>10</sup>B and <sup>11</sup>B K[CH<sub>3</sub>BF<sub>3</sub>] and K[CD<sub>3</sub><sup>11</sup>BF<sub>3</sub>] are reported, assigned and used to determine a quadratic force field for the anion. The crystal structure (*Pbca*, *a* 17.172(2), *b* 7.1486(9), *c* 7.2289(7) Å, Z = 8,  $d_c$  1.825 g/cm<sup>3</sup>) has been determined from 933 X-ray data and refined to a conventional *R* value of 0.026. Anion symmetry deviates only slightly from  $C_{3v}$  in the solid state. Values derived for the B–C (1.575(3) Å) and mean B–F (1.424(5) Å) bond lengths are the shortest and longest, respectively, found to date in borate structures. The corresponding force constants are *f*(BC) 3.7 and *f*(BF) 3.96 × 10<sup>2</sup> N m<sup>-1</sup>. The F–B–F and C–B–F bond angles average 105.4(5) and 113.3(4)°, respectively. Seven K–F contacts (2.678(1)–2.965(1) Å) are the principal cation-anion interactions in the crystal.

## Introduction

Bonds between CF<sub>3</sub> groups and electropositive elements such as Ge [1], Sn [2], As [3] and Hg [4,5,6] have been found to be longer and to possess smaller force constants than those in the relevant CH<sub>3</sub> analogs. Explanations for this unusual but systematic substitution effect have focussed on a reduction of the ionic bond character in CF<sub>3</sub> derivatives of such electropositive elements [2,7]. However, this trend has not been confirmed for boron compounds due to a lack of investigations on species of exact comparability. Structural and vibrational spectroscopic investigations of K[CF<sub>3</sub>BF<sub>3</sub>] [8] and Cs[(CF<sub>3</sub>)<sub>2</sub>BF<sub>2</sub>] [9] have, however, shown that the B—C bond lengths and force constants correspond to those in the B(CH<sub>3</sub>)<sub>4</sub><sup>-</sup> anion [10,11].

In addition, substitution of a F ligand in  $CF_3BF_3^-$  by a  $CF_3$  group causes no detectable changes in the B-CF<sub>3</sub> bond parameters [9]. Whether the B-CH<sub>3</sub> bonds in B(CH<sub>3</sub>)<sub>4</sub><sup>-</sup> are equally insensitive to F/CH<sub>3</sub> substitution is by no means obvious. To clarify this point and thus provide a firm basis for a discussion of

# the $CF_3/CH_3$ substitution effect in borate chemistry, we have carried out a X-ray structural and vibrational analysis of K[CH<sub>3</sub>BF<sub>3</sub>]. For the spectroscopic study, the isotopic species K[CD<sub>3</sub>BF<sub>3</sub>] and K[CH<sub>3</sub><sup>10</sup>BF<sub>3</sub>] were also prepared.

# Experimental

# Synthesis

K[CH<sub>3</sub>BF<sub>3</sub>] was prepared from CH<sub>3</sub>BF<sub>2</sub> [12] and aqueous KF by Stafford's procedure [13]. For K[CD<sub>3</sub>BF<sub>3</sub>] and K[CH<sub>3</sub><sup>10</sup>BF<sub>3</sub>], CD<sub>3</sub>BF<sub>2</sub> and CH<sub>3</sub><sup>10</sup>BF<sub>2</sub> were synthesized from Sn(CD<sub>3</sub>)<sub>4</sub> and BF<sub>3</sub> or Sn(CH<sub>3</sub>)<sub>4</sub> and <sup>10</sup>BF<sub>3</sub> (from Oak Ridge <sup>10</sup>B<sub>2</sub>O<sub>3</sub>, 92.4%), respectively.

# Spectra

Raman spectra were obtained from single crystals and powders employing a Cary 82 spectrometer and Kr<sup>+</sup> 6471 Å excitation, 200 mW at the sample, wave number accuracy 1-2 cm<sup>-1</sup>. IR spectra of KBr and CsBr pellets in the 4000 to 180 cm<sup>-1</sup> frequency range were recorded with a Perkin–Elmer 580 B grating spectrometer, wave number accuracy 1-2 cm<sup>-1</sup>.

# X-ray analysis

Crystals of K[CH<sub>3</sub>BF<sub>3</sub>] were grown by slow evaporation of a CH<sub>3</sub>OH/CH<sub>3</sub>-OCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub> solution in a desiccator over  $P_4O_{10}$ , cleaved and glued to a thin glass fiber. The orthorhombic space group was determined from the symmetry and systematic absences revealed by precession and Weissenberg photographs.

## TABLE 1

CRYSTAL DATA FOR K[CH3BF3]

| Crystal system                  | orthorhombic                             |  |
|---------------------------------|------------------------------------------|--|
| a                               | 17.172(2) Å <sup>a</sup>                 |  |
| -<br>b                          | 7.1486(9) Å                              |  |
| -<br>-                          | 7.2289(7) Å                              |  |
| 2                               | 8                                        |  |
| d <sub>a</sub>                  | $1.825 \text{ g cm}^{-3}$                |  |
|                                 | 20°C                                     |  |
| Systematic absences             | hk0 h = 2n + 1                           |  |
|                                 | $h0l \ l = 2n + 1$                       |  |
|                                 | $0kl \ k = 2n + 1$                       |  |
| Space group                     | Pbca                                     |  |
| Octants measured                | hkl, hkl (partial)                       |  |
| λ                               | 0.71069 Å (Mo-K <sub>w</sub> )           |  |
| Monochromator                   | graphite                                 |  |
| Maximum $\theta$                | 30°                                      |  |
| Scan technique                  | $\omega - 2	heta$                        |  |
| Scan width $(\omega)$           | $1.00^\circ + 0.35^\circ \tan \theta$    |  |
| Scan speed ( $2\theta$ )        | $1.11 - 10.00^{\circ} \text{ min}^{-1}$  |  |
| <b>Reflections measured</b>     | 1864                                     |  |
| Unique (minus absences)         | 1269                                     |  |
| With $ F_0  \ge 4\sigma( F_0 )$ | 933                                      |  |
| Weights w                       | $[\sigma^2( F_0 ) + 0.0004 F_0 ^2]^{-1}$ |  |
| Crystal size                    | 0.16 × 0.406 × 0.492 mm                  |  |
| μ(Μο-Κα)                        | $11 \text{ cm}^{-1}$                     |  |
| Transmission factors            | 0.640-0.838                              |  |

<sup>a</sup> Numbers in parentheses in this manuscript represent estimated standard deviations in the last digit.

Further measurements were made with a CAD-4 diffractometer. The sharp and symmetric  $\omega$  profiles of three strong, low order reflections proved the suitability of the crystal for an X-ray examination.

Intensity data were collected by the  $\omega$ -2 $\theta$  scan technique. During the measurement, the intensities of three periodically monitored standard reflections varied less than ±4%. Then 75 reflections were centered, and these Bragg angles were used to calculate the precise cell constants.  $\psi$ -scans of 18 reflections were collected and used later to check the validity of the numerical absorption correction. Crystal data and details of the intensity measurement are included in Table 1.

Intensities were calculated, corrected for monitor reflection fluctuations, and converted to  $|F_0|$ 's. These were assigned weights  $w = (\sigma^2(|F_0|) + 0.0004 |F_0|^2)^{-1}$ . Only those reflections with  $|F_0| \ge 4\sigma(|F_0|)$  were deemed observed and used in the solution and refinement of the structure.

The structure was solved by the heavy-atom method and refined by fullmatrix least-squares techniques. The function minimized was  $\Sigma w \Delta^2$  where  $\Delta = ||F_0| - |F_c||$ . Dispersion-corrected isolated atom form factors [14] were



Fig. 1. Perspective drawing of the cation and five closest anions utilizing 50% probability thermal ellipsoids. Except for atoms in the asymmetric unit, only those involved in short K—F contacts are labeled.

| Atom                               | ×                             | ĸ                                                  | N                    | $u_{11}{}^b$    | $U_{22}$            | $U_{33}$                  | $U_{12}$      | $U_{13}$                | U23                                     |
|------------------------------------|-------------------------------|----------------------------------------------------|----------------------|-----------------|---------------------|---------------------------|---------------|-------------------------|-----------------------------------------|
| К                                  | 1691.8(2)                     | 516.2(4)                                           | 1850,4(4)            | 546(2)          | 367(2)              | 326(2)                    | 41(1)         | 28(2)                   | 2(1)                                    |
| в                                  | 3669(1)                       | 279(2)                                             | 1783(2)              | 459(9)          | 299(7)              | 267(7)                    | -17(6)        | -10(7)                  | 10(6)                                   |
| F(1)                               | 3153,3(6)                     | -553(1)                                            | 3108(1)              | 595(6)          | 534(6)              | 345(5)                    | -64(4)        | 62(4)                   | 101(4)                                  |
| F(2)                               | 3739,4(7)                     | -1083(1)                                           | 365(1)               | 760(8)          | 495(5)              | 343(5)                    | -87(5)        | -3(5)                   | -125(4)                                 |
| F(3)                               | 3245,4(6)                     | 1788(1)                                            | 997(2)               | 615(7)          | 415(5)              | 679(7)                    | 39(4)         | 80(5)                   | 207(5)                                  |
| c                                  | 4479(1)                       | 867(3)                                             | 2620(3)              | 541(11)         | 548(10)             | 494(10)                   | -44(9)        | (6)06-                  | -65(9)                                  |
| H(1)                               | 441(1)                        | 189(4)                                             | 344(4)               | 88(8)           |                     | •                         |               |                         |                                         |
| H(2)                               | 472(2)                        | (†)6                                               | 322(4)               | 85(8)           |                     |                           |               |                         |                                         |
| H(3)                               | 482(1)                        | 126(3)                                             | 168(3)               | 72(7)           |                     |                           |               |                         |                                         |
| <sup>d</sup> For H X<br>respective | 10 <sup>3</sup> , otherwise > | $\times$ 10 <sup>4</sup> , <sup>b</sup> Form of th | ie anisotropic and i | sotropic therma | l ellipsoids is exp | $[-2\pi^2(h^2a^{*2}U_1)]$ | 1 + + 2klb *c | * <i>U</i> 23)] and exp | $[-8\pi^2 U \sin^2 \theta / \lambda^2]$ |

positional and thermal parameters  $^{\mathfrak{a}}$  for  $K[CH_3BF_3]$ 

used for all atoms except H (SDS). After three cycles employing anisotropic thermal ellipsoids for the nonhydrogen atoms, coordinates for the H atoms were taken from the three highest peaks  $(0.51-0.61 \text{ e } \text{Å}^{-3})$  in a difference Fourier synthesis. These atoms were subsequently refined isotropically. Then the absorption correction was applied, and further refinement including an extinction correction of the form  $F_c = F_c^* (1 - \eta F_c^{*2} / \sin \theta)$  converged with  $\eta = 3.2(4) \times 10^{-7}, R = \Sigma \Delta \Sigma |F_0| = 0.026 \text{ and } R_w = [\Sigma w \Delta^2 \Sigma w |F_0|^2]^{1/2} =$ 0.034. For all reflections, the residuals are 0.046 and 0.036 respectively. In the final cycle the maximum magnitude of  $\xi/\sigma$  was 0.01. The flat plots of the function  $\langle w \Delta^2 \rangle$  versus  $|F_0|$ , sin  $\theta / \lambda$  and the indices atest to the validity of the weighting scheme. Densities in the final difference map range from 0.34 to -0.26 e  $Å^{-3}$  and thus confirm the structure. Positional and thermal parameters are listed in Table 2, the numbering scheme being defined in Fig. 1. Distances and angles are given in Table 3. Calculations were made with SHELX-76. XANADU. ORTEP-2 and locally written programs. Tables of observed and calculated structure factors may be obtained from the authors.

Temperature factors  $U_{ij}^0$  of the CBF<sub>3</sub> fragment were investigated for TLS rigid body motion [15]. The fit of the thermal parameters  $U_{ij}^c$  calculated by this twenty variable model to the  $U_{ij}^0$ 's, as judged by the correspondence between  $[\Sigma(U_{ij}^0 - U_{ij}^c)^2/10]^{1/2} = 11 \times 10^{-4} \text{ Å}^2$  and  $[\Sigma\sigma^2(U_{ij}^0)/30]^{1/2} = 7 \times 10^{-4} \text{ Å}^2$ , is excellent. Librational corrections to the B–C and B–F distances amount to 0.018 and 0.019 Å (mean), respectively. Unless specified to the contrary, uncorrected distances are referred to in this paper.

#### Description of the crystal structure

The structure confirms the ionic formulation for K[CH<sub>3</sub>BF<sub>3</sub>]. Since contacts between anions exceed the sums of the relevant van der Waals [16], the packing is apparently dictated by the cation-anion interactions. Indeed the cations form their closest contacts with F atoms in five anions, the midpoints of which roughly describe a square pyramid (Fig. 1). These polyhedra are linked perpendicular to a into layers with  $CH_3$  groups occupying the surfaces. Seven K-F contacts are found at 2.678(1) to 2.965(1) Å. The next shortest (3.422(1) Å)exceeds the closest K–B distance (3.399(2) Å) and therefore is not considered to be bonding. For comparison, six K-F(B) contacts between 2.724(3) and 2.982(3) Å are found in K[CF<sub>3</sub>BF<sub>3</sub>] [8] while ten such distances (2.758(3) -3.075(2) Å) were reported for KBF<sub>4</sub> [17]. The three shortest K–C distances (3.791(2)-3.924(2) Å) are distinctly longer than those in K[Al(CH<sub>1</sub>)<sub>3</sub>CN] (3.24-3.65 Å) [18]. Apparently they as well as their concomitant K-H interactions ( $\geq$  3.40 Å) contribute little to the stability of the crystals. This reluctance of the CH<sub>3</sub> group to participate in anion-cation interaction contrasts with the important contributions of  $K-F(CF_3)$  contacts to the crystal stability of K[CF<sub>3</sub>BF<sub>3</sub>] [8].

The symmetry of the  $CH_3BF_3^-$  anion is approximately  $C_{3v}$  with the  $CH_3$  group staggered with respect to the  $BF_3$  fragment. Small but significant deviations from this symmetry are shown by the F-B-F and C-B-F bond angles, the B-F bond distances and H-C-B-F torsion angles (Table 3). These undoubtedly result from packing effects. For instance, the longest B-F valency

| Distances (Å)<br>BC<br>BF(1)<br>BF(2)<br>BF(3) | 1.575(3) $1.434(2)$ $1.418(2)$ $1.420(2)$ $1.424(5)$ | 1.593 a<br>1.451 a<br>1.439 a<br>1.440 a<br>1.440(a) | a        | $K = F(1) K = F(1)^{I c} K = F(1)^{II} K = F(2)^{II} K = F(2)^{III} K = F(2)^{III} K = F(3)_{YY}$ | 2.777(1)<br>2.7182(9)<br>2.965(1)<br>2.759(1)<br>2.678(1)<br>2.885(1) |
|------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                | 1.12-1(0)                                            | 1.440(4)                                             |          | K—F(3) <sup>1</sup>                                                                               | 2.737(1)                                                              |
| C = H(1)                                       | 0.95(3)                                              |                                                      |          |                                                                                                   |                                                                       |
| C = H(2)                                       | 0.91(3)                                              |                                                      |          |                                                                                                   |                                                                       |
| С—Н(3)                                         | 0.94(3)                                              |                                                      |          |                                                                                                   |                                                                       |
| av.                                            | 0.93(2)                                              |                                                      |          |                                                                                                   |                                                                       |
| Bond angles (°)                                |                                                      |                                                      |          |                                                                                                   |                                                                       |
| C-B-F(1)                                       | 113.5(                                               | 1) B—0                                               | C—H(1)   | 109(2)                                                                                            |                                                                       |
| C—B—F(2)                                       | 112.6(                                               | 2) B0                                                | C—H(2)   | 112(2)                                                                                            |                                                                       |
| C-B-F(3)                                       | 113.8(                                               | 1) B—0                                               | С—Н(З)   | 111(2)                                                                                            |                                                                       |
| av.                                            | 113.3(                                               | 4)                                                   | av.      | 110.7(9)                                                                                          |                                                                       |
| F(1)-B-F(2)                                    | 104.5(                                               | 1) H(1                                               | )—C—H(2) | 110(2)                                                                                            |                                                                       |
| F(1)-B-F(3)                                    | 105.5(                                               | 1) H(1                                               | )CH(3)   | 108(2)                                                                                            |                                                                       |
| F(2)—B—F(3)                                    | 106.1(                                               | 1) H(2                                               | )—C—H(3) | 107(2)                                                                                            |                                                                       |
| av.                                            | 105.4(                                               |                                                      | av.      | 108.3(13)                                                                                         |                                                                       |
| Torsion angles (° ) $d$                        |                                                      |                                                      |          |                                                                                                   |                                                                       |
| F(1)-B-C-H(1)                                  | 69(2) F                                              | (1)—B—C—H(2)                                         | 53(2)    | F(1)-B-C-H(3)                                                                                     | 173(2)                                                                |
| F(2)—B—C—H(2)                                  | —65(2) F                                             | (2)—B—C—H(3)                                         | 54(2)    | F(2)-BCH(1)                                                                                       | 173(2)                                                                |
| F(3)-B-C-H(3)                                  | 66(2) F                                              | (3)—B—C—H(1)                                         | 52(2)    | F(3)—B—CH(2)                                                                                      | 174(2)                                                                |
| av.                                            | -67(1)                                               |                                                      | 53(1)    |                                                                                                   | 173(1)                                                                |

| SELECTED | GEOMETRI | CAL VA | LUES FOR | KICH-BE-1 |
|----------|----------|--------|----------|-----------|

<sup>a</sup> Librationally corrected distances. <sup>b</sup> Errors in these average values are taken as the larger of  $[\Sigma \sigma^2]^{1/2}/n$ and  $[\Sigma(1-1)^2/n(n-1)]^{1/2}$ . <sup>c</sup> Coordinates of primed atoms are related to those r in Table 2 as follows:  $r^{I} = 0.5 - x, -y, z - 0.5; r^{II} = 0.5 - x, 0.5 + y, z; r^{III} = 0.5 - x, -y, 0.5 + z; r^{IV} = 0.5 - x, y - 0.5, z.$ <sup>d</sup> A positive sign for the torsion angle  $\omega$  (ABCD) indicates a clockwise rotation of BA into CD.

is that involving F(1), the only F atom entering more than two short K—F contacts. Since distortions found in the solid state are not large enough to indicate that the ideal symmetry would not be realized in a more symmetric medium, average geometric values (Table 3) will be considered in the following discussion.

The B-C bond length in K[CH<sub>3</sub>BF<sub>3</sub>] is the shortest reported to date for a borate complex (Table 4). In particular, it is 0.059(8) and 0.050(7) Å shorter than those reported in the X-ray studies of Li[B(CH<sub>3</sub>)<sub>4</sub>] [10] and K[CF<sub>3</sub>BF<sub>3</sub>] [8], respectively. Indeed the B-C bond in K[CH<sub>3</sub>BF<sub>3</sub>] comes close to that reported in the gas phase for trigonally coordinated B(CH<sub>3</sub>)<sub>3</sub> [19], the librationally corrected distance in the borate being only 0.015(3) Å longer. This short valency is accompanied by the longest B-F distances reported for a fluoroborate (Table 4), small F-B-F bond angles (105.4(4)°) and concomitantly large C-B-F valence angles (113.3(4)°). Nearly tetrahedral F-B-F angles were found in K[CF<sub>3</sub>BF<sub>3</sub>] [8] and Cs[(CF<sub>3</sub>)<sub>2</sub>BF<sub>2</sub>] [9] (Table 4). The geometry of the CH<sub>3</sub> group is normal for a X-ray determination, the B-C-H and H-C-H angles showing no significant deviations from the tetrahedral value.

TABLE 4

COMPARISONS OF SELECTED BORON COMPOUNDS

|                                                      |                                                  | بورجلا المكافر المحاربة والمتعالمة والمتعلية والمتعادية والمحارفين فالمحارفين |          |                                                                                                                |           |            |
|------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|-----------|------------|
|                                                      | вС (Å)                                           | f(BC)<br>X 10 <sup>2</sup> N m <sup>-1</sup>                                  | В—F (Å)  | ((BF)<br>× 10 <sup>2</sup> N m <sup>-1</sup>                                                                   | Г−В−Г (°) | References |
| Cs[(CF <sub>3</sub> ) <sub>2</sub> BF <sub>2</sub> ] | $1.603(9) \frac{a}{b}$<br>1.632(8) $\frac{b}{b}$ | 3,68                                                                          | 1,391(4) | 4.17                                                                                                           | 108,1(4)  | 6          |
| K[CF <sub>3</sub> BF <sub>3</sub> ]                  | 1.625(6)                                         | 3,63                                                                          | 1.391(5) | 4.19                                                                                                           | 109.9(5)  | 8          |
| K[BF4]                                               |                                                  |                                                                               | 1.386(3) | 4.85                                                                                                           | 109.5(4)  | 17, 28     |
| K[CH <sub>3</sub> BF <sub>3</sub> ]                  | 1.676(3)                                         | 3.70                                                                          | 1.424(5) | 3.96                                                                                                           | 105,4(5)  | this work  |
| Li[B(CH <sub>3</sub> ) <sub>4</sub> ]                | 1.634(7)                                         | 3,40                                                                          |          |                                                                                                                |           | 10, 11     |
| B(CH <sub>3</sub> ) <sub>3</sub>                     | 1.578(1)                                         | 3.84                                                                          |          |                                                                                                                |           | 19, 11     |
| d on                                                 | b an                                             |                                                                               |          | er en melon de la menor de la constant de la const |           |            |

CF<sub>3</sub> group staggered. <sup>D</sup> CF<sub>3</sub> group eclipsed.

## Vibrational spectra

The IR and Raman spectra of  $K[CH_3^{10}BF_3]$ ,  $K[CH_3^{11}BF_3]$  and  $K[CD_3BF_3]$ are collected in Table 5. The single crystal Raman spectrum of  $K[CH_3BF_3]$  is shown in Fig. 2. Because of the poor solubility in H<sub>2</sub>O, polarization measurements could be made only for the strongest Raman line associated with  $\nu_3$ . The relationship between the anion and the isoelectronic species  $CH_3CF_3$ 

The relationship between the anion and the isoelectronic species  $CH_3C_3$ 

```
VIBRATIONAL SPECTRA (cm<sup>-1</sup>) OF CH<sub>3</sub><sup>11</sup>BF<sub>3</sub><sup>-</sup>, CH<sub>3</sub><sup>10</sup>BF<sub>3</sub><sup>-</sup> AND CD<sub>3</sub><sup>11</sup>BF<sub>3</sub><sup>-</sup>
```

| CH3 <sup>11</sup> BF3 |        | CH3 <sup>10</sup> BF3 | , <b>-</b> | CD311BF3         | _                 | Assignment                                      |
|-----------------------|--------|-----------------------|------------|------------------|-------------------|-------------------------------------------------|
| IR                    | Raman  | IR                    | Raman      | IR               | Raman             |                                                 |
| 309vw                 | 310w   | 310vw                 | 311w       | 284vw            | 285w              | νg (e)                                          |
| 450vw<br>462vw        | 458w   | 451vw<br>463vw        | 459w       | 433vw<br>445vw   | 440w              | v <sub>8</sub> (e)                              |
| 516m                  | 517w   | 517m                  | 518w       | 489m             | 491m              | $\nu_2$ (a <sub>1</sub> )                       |
|                       |        |                       |            | 667s<br>673s     | 670sh             | v12 (e)                                         |
| 708m                  | 708s   | 708m                  | 708s       | 683m             | 683s              | $\nu_{3}(a_{1})$                                |
|                       |        |                       |            | 735vvw<br>743vvw |                   | $CD_2H^{11}BF_3^-$                              |
|                       |        |                       |            | 770vvw           |                   | $\nu_2 + \nu_9$ (E)                             |
| 781s<br>791s          | 786w   | 786s<br>796s          | 791w       |                  |                   | v <sub>12</sub> (e)                             |
|                       |        |                       |            | 960vs            |                   | v7 (e)                                          |
|                       |        |                       |            | 980vs            | 980vs             | $v_5(a_1)$                                      |
| 1000sh                |        | 1030sh                |            | 101850           |                   | CD <sub>2</sub> H <sup>2</sup> -BF <sub>3</sub> |
| 1022vs                |        | 1050vs                |            |                  |                   | ν <sub>7</sub> (e)                              |
|                       |        |                       |            | 1058w            | 1057m             | v <sub>11</sub> (e)                             |
|                       |        |                       |            | 1116vw<br>1126vw |                   | $CD_2H^{11}BF_3^{-1}$                           |
| 1091vs                | 1105vw | 1129vs                | 1144vw     |                  |                   | ν <sub>1</sub> (α <sub>1</sub> )                |
|                       |        |                       |            | 1156s            | 1155vw            | $\nu_1/\nu_2 + \nu_3 (a_1)/(A_1)$               |
|                       |        |                       |            | 11805<br>1205mg  | 1180VW<br>1200may | $CD_{2}^{10}BE_{2}^{-}$                         |
| 1222vw                |        | 1223vw                |            | 12001115         | 12000₩            | $\nu_2 + \nu_3 (A_1)$                           |
|                       |        |                       |            | 1244vvw          |                   | CD. HIIPE.                                      |
|                       |        | _                     |            | 1253vvw          |                   | CD2H-BF3                                        |
| 1313s                 |        | 1317s                 |            |                  |                   |                                                 |
| 1328vs<br>1334s       |        | 1332vs<br>1338s       |            |                  |                   | $\nu_5(a_1)$                                    |
| 20010                 |        | 10000                 |            | 1334vvw          |                   | <b>0</b> () <b>D</b>                            |
|                       |        |                       |            | 1340vvw          |                   | $2\nu_{12}(A_1, E)$                             |
|                       |        |                       |            | 1352vvw          |                   | $v_3 + v_{12}$ (E)                              |
| 1440vvw               | 1449m  | 1441vvw               | 1450m      |                  |                   | $v_{11}$ (e)                                    |
| 1494vvw               |        | 1498vvw<br>1585       |            |                  |                   | $v_3 + v_{12}(E)$                               |
| 1010114               |        | 100000                |            |                  | 2070m             | $\nu_4 (a_1)$                                   |
|                       |        |                       |            |                  | 2125m<br>2144m    | $v_1 + v_5/v_2 + v_3 + v_5$ (A <sub>1</sub> )   |
|                       |        |                       |            | <b>2216m</b>     | 2216m             | v <sub>10</sub> (e)                             |
| 2866vw                | 2851w  | 2868vw                | 2851w      |                  |                   | $2\nu_{11}$ (A <sub>1</sub> , E)                |
| 2925w                 | 2925m  | 2925w                 | 2925m      | 0036             |                   | $v_4 (a_1)$                                     |
| 2956m                 |        | 2956m                 |            | 2936VVW          |                   | CD2H-BF3                                        |
| 2964 m                | 2961m  | 2964m                 | 2961m      |                  |                   | v <sub>10</sub> (e)                             |

NOTATION, DESCRIPTION AND FREQUENCIES OF FUNDAMENTAL VIBRATIONS (cm<sup>-1</sup>) TABLE 6

|               |               |                                                    | CH <sub>3</sub> CF <sub>3</sub> [20] | CH3 <sup>10</sup> BF3 <sup>-</sup> | СН <sub>3</sub> <sup>11</sup> ВF <sub>3</sub> - | CD <sub>3</sub> CF <sub>3</sub> [20] | CD <sub>3</sub> <sup>11</sup> BF <sub>3</sub> <sup>-</sup> |
|---------------|---------------|----------------------------------------------------|--------------------------------------|------------------------------------|-------------------------------------------------|--------------------------------------|------------------------------------------------------------|
| al (IR, Rap)  | μİ            | ν(BF,CF)                                           | 1280                                 | 1129                               | 1091                                            | 1320                                 | 1156/1186                                                  |
|               | <sup>72</sup> | $\delta_{g}(BF_{3}, CF_{3})$                       | 604                                  | 517                                | 516                                             | 570                                  | 489                                                        |
|               | 5             | v(BC,CC)                                           | 828                                  | 708                                | 708                                             | 796                                  | 683                                                        |
|               | <b>b</b> 4    | v(CH,CD)                                           | 2972                                 | 2925                               | 2925                                            | 2168                                 | 2070                                                       |
|               | νs            | δ <sub>s</sub> (CH <sub>3</sub> ,CD <sub>3</sub> ) | 1408                                 | 1332                               | 1328                                            | 1068                                 | 980                                                        |
| a2 (-*-)      | лe            | Torsion                                            | 220                                  | 200 <sup>a</sup>                   | 200 <sup>a</sup>                                | 162                                  | 144 <sup>a</sup>                                           |
| e (IR, Ra dp) | La            | $\mu(BF, CF)$                                      | 1220                                 | 1050                               | 1022                                            | 1185                                 | 960                                                        |
|               | 8.1           | 6 (BF <sub>3</sub> , CF <sub>3</sub> )             | 544                                  | 459                                | 458                                             | 524                                  | 440                                                        |
|               | 61            | 6 (CBF, CCF)                                       | 371                                  | 310                                | 309                                             | 340                                  | 284                                                        |
|               | P10           | v(CH,CD)                                           | 3035                                 | 2960                               | 2960                                            | 2280                                 | 2216                                                       |
|               | 114           | 6(CH <sub>3</sub> ,CD <sub>3</sub> )               | 1452                                 | 1450                               | 1449                                            | 1046                                 | 1058                                                       |
|               | 211           | ρ(CH <sub>3</sub> ,CD <sub>3</sub> )               | 965                                  | 167                                | 786                                             | 811                                  | 670                                                        |
|               |               |                                                    |                                      |                                    |                                                 |                                      |                                                            |

<sup>d</sup> Calculated frequency.

. .



Fig. 2. Single crystal Raman spectrum of K[CH<sub>3</sub>BF<sub>3</sub>].

and  $CD_3CF_3$  [20] is a valuable key for the assignment of the spectra. Table 6 gives the description and notation of the fundamental vibrations  $v_1$  to  $v_{12}$  for  $C_{3v}$  symmetry of the anion and emphasizes the analogy of CH<sub>3</sub>CF<sub>3</sub> and CD<sub>3</sub>CF<sub>3</sub> with  $CH_3BF_3^-$  and  $CD_3BF_3^-$ . It may be noted that, in general, the vibrations of  $CH_3CF_3$  and  $CD_3CF_3$  are shifted towards the red in the anion; the exception of  $\nu_7/\nu_{11}$  of the deuterated species is only a formal one because here  $\nu_7$  and  $\nu_{11}$  are coupled. The assignment is further supported by the  ${}^{10}B/{}^{11}B$  shifts, which mainly affect the BF stretches  $\nu_1$  and  $\nu_7$ , and by the results of the normal coordinate analysis given below. Except for the torsion  $v_6$  which is IR and Raman inactive, all the fundamentals were observed. The class e skeletal bends  $v_{a}$  and  $v_9$  are expected to be the lowest lying non-torsional fundamentals. As in  $CH_3CF_3$ , the  $a_1$  vibrations  $v_2$  and  $v_3$  associated with the strongest Raman lines are mixed, and the descriptions given in Table 6 could also be exchanged. The choice between  $\nu_1$  and  $\nu_7$  is based on the intensities, while the symmetric CH<sub>3</sub> bending vibration  $v_5$  is expected to appear below  $v_{11}$  whenever a methyl group is bound to a heavy or an electropositive element, and indeed a close analogy between  $CH_3BF_3^-$  and  $CH_3Br$  [21] is revealed for all methyl vibrations. The

| TABLE | 7     |           |                      |            |           |       |   |
|-------|-------|-----------|----------------------|------------|-----------|-------|---|
| INNER | FORCE | CONSTANTS | (X 10 <sup>2</sup> N | $(m^{-1})$ | Scaled to | 100 p | m |

| (BC)    | (1) | 3.700 | (1/2)              | 0.157  | (2/2)              | 0.066  | (3/3)              | 0.635  |  |
|---------|-----|-------|--------------------|--------|--------------------|--------|--------------------|--------|--|
| (CH)    | (2) | 4.835 | (1/3)              | 0.319  | (2/4) <sup>b</sup> | -0.041 | (3/6) <sup>b</sup> | -0.212 |  |
| (BF)    | (3) | 3,960 | (1/4)              | 0.043  | (2/5) <sup>a</sup> | -0.020 | (3/6) <sup>a</sup> | 0.393  |  |
| (HCH)   | (4) | 0.503 | (1/5)              | 0.053  | (2/5) <sup>a</sup> | 0.104  | (3/7) <sup>a</sup> | 0.236  |  |
| (BCH)   | (5) | 0.564 | (1/6)              | -0.136 | (2/5) <sup>b</sup> | -0.124 | (3/7) <sup>b</sup> | 0.304  |  |
| (FBF)   | (6) | 1.411 | (1/7)              | 0.119  | (4/4)              | 0.035  | (6/6)              | 0.113  |  |
| (CBF)   | (7) | 0.824 | (5/7) <sup>6</sup> | 0.098  | (4/5) <sup>a</sup> | 0.004  | $(6/7)^{a}$        | 0.024  |  |
| Torsion | (8) | 0,074 | (5/7) <sup>a</sup> | -0.024 | (4/5) <sup>b</sup> | 0.032  | (6/7) <sup>b</sup> | 0.059  |  |
|         |     |       |                    |        | (5/5)              | 0.048  | (7/7)              | 0.020  |  |
|         |     |       |                    |        |                    |        |                    |        |  |

a Adjacent. b Opposite.

| WATE WITTO AN     |          |             |          |          |          |          |                                                                                                                |             |
|-------------------|----------|-------------|----------|----------|----------|----------|----------------------------------------------------------------------------------------------------------------|-------------|
| (c)/(c)/(c)       | (BC)     | (CH)        | (BF)     | (нсн)    | (BCH)    | (FBF)    | (CBF)                                                                                                          | (Torsion)   |
| 29 26 /2926 /2098 |          | 98/ 98/ 98  |          |          |          |          | ينيا سيسبه يوريها بواردي فالمحاط والمحاط والمحاط والمحاط والمحاط والمحاط والمحاط والمحاط والمحاط والمحاط والمح |             |
| 1340/1343/1171    | 16/19/66 |             | / /14    | 45/43/14 | 50/49/16 | / /13:   |                                                                                                                |             |
| 092/1132/ 976     | 55/51/   |             | 31/30/25 | / /30    | /33      | 24/24/14 | 11/11/                                                                                                         |             |
| 708/ 708/ 683     | 18/18/13 |             | 52/52/44 |          |          |          |                                                                                                                |             |
| 517/ 518/ 489     | 17/18/22 |             |          |          |          | 42/41/37 | 19/19/17                                                                                                       |             |
| 200/200/144       |          |             |          |          |          |          |                                                                                                                | 100/100/100 |
| 2981/2981/2213    |          | 102/102/102 |          |          |          |          |                                                                                                                | -           |
| 1459/1460/1053    |          |             |          | 86/86/84 |          |          |                                                                                                                |             |
| 1027/1051/959     |          |             | 55/62/97 | •        | 50/44/18 | 11/13/19 | 13/14/17                                                                                                       |             |
| 786/794/669       |          |             | 87/78/42 |          | 43/50/64 | 11/10/   |                                                                                                                |             |
| 453/455/444       |          |             |          |          |          | 83/81/90 |                                                                                                                |             |
| 310/ 310/ 283     |          |             |          |          | 14/14/23 | 14/14/   | 66/66/66                                                                                                       |             |

increase of  $v_1$  upon deuteration is caused by crossing with  $v_5$ , and furthermore anharmonic resonance of  $v_1$  with  $v_2 + v_3$  affects the spectrum of the deuterated <sup>11</sup>B species, while the proximity of  $v_1$  and  $v_2 + v_3$  required for resonance is not present for the <sup>10</sup>B analogue.

## Normal coordinate analysis

A normal coordinate analysis based on idealized  $C_{3v}$  geometry with the averaged structural parameters of Table 3 was performed. An appropriate program [22] was used, and the starting inner force constants were taken from CH<sub>3</sub>CF<sub>3</sub> [20] and CF<sub>3</sub>BF<sub>3</sub><sup>-</sup> [8]. The force field was then refined, applying the constraints of a meaningful potential energy distribution, to reproduce the frequencies of the CH<sub>3</sub><sup>10</sup>BF<sub>3</sub><sup>-</sup>, CH<sub>3</sub><sup>11</sup>BF<sub>3</sub><sup>-</sup> and CD<sub>3</sub><sup>11</sup>BF<sub>3</sub><sup>-</sup> species. The CH stretch and bending vibrations were corrected by a factor of 1.01 to account for different anharmonicity of CH and CD modes. The final set of inner force constants is set out in Table 7, while Table 8 lists the calculated frequencies and their potential energy distribution in terms of inner force constants. The agreement between observed (Table 6) and calculated frequencies is satisfactory throughout; the isotopic shifts are well reproduced. The large value of the BC stretching force constant,  $3.7 \times 10^2$  N m<sup>-1</sup>, and the small BF stretching force constant,  $3.96 \times 10^2$  N m<sup>-1</sup>, are noteworthy.

### Discussion

While the principal objective of this study was to clarify the  $CF_3/CH_3$  substitution effect in the fluoroborates, it also yields previously unavailable information on  $F/CH_3$  substitution in such compounds. The structural and force field information necessary for these comparisons is given in Table 4. Bond lengthening and decrease of the stretching force constant are correlated as expected. The substitutions  $CF_3/CH_3$  and  $F/CH_3$  result in comparable B—F bond lengthening and F-B-F angle contraction. Since analogous differences (0.021(2) Å and 2.6(2)° respectively) between  $CF_4$  [23] and  $CH_3CF_3$  [24] are only marginally smaller, the inductive effect may be invoked to explain them. The lengthening of the B—C bond in Li[B(CH<sub>3</sub>)<sub>4</sub>] compared to K[CH<sub>3</sub>BF<sub>3</sub>] may be rationalized similarly.

However, the inductive effect fails to explain why the B—C bond length in  $K[CH_3BF_3]$  is shorter than that in  $K[CF_3BF_3]$ . The change in B—C length, 0.050(7) Å, is essentially identical with shortenings (0.050(6), 0.058(3) and 0.058(3) Å of M—CH<sub>3</sub> vs. M—CF<sub>3</sub> bonds, respectively, found for GeR<sub>4</sub> [1], SnR<sub>4</sub> [2] and PR<sub>3</sub> [3]. On the other hand, less shortening (0.025(2)Å) was observed for M=C [25], and such evidence has been cited in support of the electronegativity of M influencing the CF<sub>3</sub>/CH<sub>3</sub> substitution effect [2,7,23,26].

For the borates, the shortening might imply that the resonance



is more important for  $R = CF_3$ ; that is, the B-CF<sub>3</sub> bond might be less covalent

than the  $B-CH_3$  valence. Note that this does not depend on the substitution effect mentioned above.

More likely the charge distribution in  $RBF_3^-$  anions may be relevant here. CNDO calculations on related species [27] indicate that the B atom in  $RBF_3^$ anions carries a positive charge. Since the C atom in  $CF_3BF_3^-$  should be more positively charged than that in  $CH_3BF_3^-$  (which may be negatively charged), differences in electrostatic force in these anions might well account for the different B—C bond lengths. Interestingly, the electrostatic contribution to the relatively long B—C interactions in the anion  $B(CH_3)_4^-$  was calculated to be repulsive [27]. Clearly a quantification of the charge distribution in these compounds is a prerequisite for the separation of electrostatic and covalent contributions to the B—C bonding, and thus for a clearer understanding of the  $CH_3/CF_3$  substitution effect.

#### Acknowledgement

Support by the Fonds der Chemie is gratefully acknowledged. We express our gratitude to Prof. C. Krüger, Mülheim, for making X-ray facilities available to us.

#### References

- 1 H. Oberhammer and R. Eujen, J. Mol. Struct., 51 (1979) 211.
- 2 R. Eujen, H. Bürger and H. Oberhammer, J. Mol. Struct., 71 (1981) 109.
- 3 H.J.M. Bowen, Trans. Faraday Soc., 50 (1954) 463.
- 4 D.J. Brauer, H. Bürger and R. Eujen, J. Organometal. Chem., 135 (1977) 281.
- 5 H. Oberhammer, J. Mol. Struct., 48 (1978) 389.
- 6 H. Günther, H. Oberhammer and R. Eujen, J. Mol. Struct., 64 (1980) 249.
- 7 H. Oberhammer, H. Günther, H. Bürger, F. Heyder and G. Pawelke, J. Phys. Chem., 86 (1982) 664.
- 8 D.J. Brauer, H. Bürger and G. Pawelke, Inorg. Chem., 16 (1977) 2305.
- 9 D.J. Brauer, H. Bürger and G. Pawelke, J. Organometal. Chem., 192 (1980) 305.
- 10 W.E. Rhine, G. Stucky and S.W. Peterson, J. Amer. Chem. Soc., 97 (1975) 6401.
- 11 H.J. Becher and F. Bramsiepe, Spectrochim. Acta, A, 35 (1979) 53.
- 12 A.B. Burg and J.R. Spielman, J. Amer. Chem. Soc., 83 (1961) 2667.
- 13 S.L. Stafford, Can. J. Chem., 41 (1963) 807.
- 14 J.A. Ibers and W.C. Hamilton (Eds.), International Tables for X-ray Crystallography, Vol. IV, The Kynoch Press, Birmingham, 1974, Table 2.3.1; J.A. Ibers and W.C. Hamilton (Eds.), ibid., Table 2.2B.
- 15 V. Schomaker and K.N. Trueblood, Acta Crystallogr., Sect. B, 24 (1968) 63.
- 16 A. Bondi, J. Phys. Chem., 68 (1964) 441.
- 17 G. Brunton, Acta Crystallogr., Sect. B, 25 (1969) 2161.
- 18 J.L. Atwood and R.E. Cannon, J. Organometal. Chem., 47 (1973) 321.
- 19 L.S. Bartell and B.L. Carroll, J. Chem. Phys., 42 (1965) 1135.
- 20 H. Bürger, H. Niepel and G. Pawelke, Spectrochim. Acta, A, 36 (1980) 7.
- 21 G. Graner, J. Mol. Spectrosc., 90 (1981) 394.
- 22 D. Christen, J. Mol. Struct., 48 (1978) 101.
- 23 V. Typke, M. Dakkouri and H. Oberhammer, J. Mol. Struct., 44 (1978) 85.
- 24 B. Beagley, M.O. Jones and M.A. Zanjanchi, J. Mol. Struct., 56 (1979) 215.
- 25 H. Oberhammer, J. Chem. Phys., 69 (1978) 468.
- 26 A. Yokozeki and S.H. Bauer, Top. Curr. Chem., 53 (1975) 71.
- 27 O. Gropen and A. Haaland, Acta Chem. Scand., 27 (1973) 521.
- 28 H.J. Becher, Colloq. Intern. CNRS, Paris, 191 (1970) 187.